J Comput Virol
DOI 10.1007/511416-006-0017-x

ORIGINAL PAPER

End-to-end security implementation for mobile devices

using TLS protocol

Baris Kayayurt - Tugkan Tuglular

Received: 13 January 2006 / Revised: 11 February 2006 / Accepted: 28 March 2006

© Springer-Verlag France 2006

Abstract End-to-end security has been an emerging
need for mobile devices with the widespread use of per-
sonal digital assistants and mobile phones. Transport
Layer Security Protocol (TLS) is an end-to-end secu-
rity protocol that is commonly used on the Internet,
together with its predecessor, SSL protocol. By imple-
menting TLS protocol in the mobile world, the advan-
tage of the proven security model of this protocol can
be utilized. The main design goals of mobile end-to-end
security protocol are maintainability and extensibility.
Cryptographic operations are performed with a free li-
brary, Bouncy Castle Cryptography Package. The object
oriented architecture of proposed end-to-end security
protocol implementation makes the replacement of this
library with another cryptography package easier. The
implementation has been experimented with different
cases, which represent use of different cryptographic
algorithms.

1 Introduction

Current trends in mobile applications have been the
enterprise-style applications that needed high-capacity,
network-connected devices. Financial applications like
banking and stock trading are common examples of

B. Kayayurt (<)

Havelsan, Eskisehir Yolu 7. Km.,
06520 Ankara, Turkey

e-mail: kayayurt@bornova.ege.edu.tr

T. Tuglular

Department of Computer Engineering,
Izmir Institute of Technology,
Gulbahce Koyu, Urla, Izmir, Turkey
e-mail: tugkantuglular@iyte.edu.tr

these kinds of applications. However, some deficiencies
prevent its acceptance in e-commerce applications [12].
With more and more network connected applications,
security has became one of the most popular concept
in mobile community. Mobile security deals mainly with
two issues: security of the physical device and its con-
tents and security of the data in network communication.

The communication of data in mobile devices is pro-
vided by the mobile networks. Mobile networks are
open to many kinds of attacks. The open data communi-
cation in these networks may cause attacks against the
secrecy, integrity and authenticity of data. Many ven-
dors have proposed solutions against these security vul-
nerabilities. Most of these solutions are vendor-specific
proprietary products or libraries.

Jgsang and Sanderud [6] investigated the aspects of
mobile networks and found that it is both harder and
easier to implement communication security as com-
pared to the Internet for example. They concluded that
communication between mobile and fixed networks cre-
ate particular problems regarding security protocol de-
sign. Data security problems can be minimized through
the implementation of end-to-end security in this proxy-
based environment.

Many mobile networks have proxy-based architec-
ture. In this architecture, security between the mobile
device and the proxy server is provided with a solu-
tion and the security between the proxy server and the
destination server is provided with another solution.
WTLS, announced as the security solution of WAP pro-
tocol, is such a protocol. There are two problems with
proxy-based solutions. First, it decreases performance.
As the data is decoded and reencoded at proxy server, it
may cause latency. Second, regardless of using WTLS, a
malicious operator can eavesdrop and tamper with the

@ Springer

B. Kayayurt, T. Tuglular

data [10]. These attacks may be a threat to the data
security between the period it is decoded and encoded.

The alternative to proxy based security solutions is
end-to-end security. End-to-end security refers to the
securely encoding of data at the source host and decod-
ing at the destination host. The data will not travel un-
encoded at any part of the communication. Transport
Layer Security Protocol (TLS) and its predecessor Se-
cure Sockets Layer (SSL) protocols are end-to-end secu-
rity solutions that are commonly used in the wired world
[1]. There are a number of reasons to use these protocols
in the mobile world:

— TLS and SSL protocols have been used for many
years, so their security is tested by the community
and accepted as secure enough to be used by finan-
cial data communication.

— TLS and SSL protocols are common in wired world
and may be accepted as the security protocol of In-
ternet. Using these in mobile applications will make
the integration between mobile applications and In-
ternet easier.

— TLS and SSL have open specifications and many
implementations. It may be relatively easy to imple-
ment these for specific needs.

Both protocols are known by their resource consuming
nature and the idea that they are not suitable for mobile
networks. The end-to-end security solution presented
in this paper is implemented for mobile devices using
Java platform in order to show that it is possible and
efficient to use TLS in mobile networks. Kwon et al. [§]
worked on the same problem and published an end-to-
end security model that utilizes transport layer security
to overcome WAP security problems. However, imple-
mentation of their model and related experiments with
resulting values cannot be found.

In this paper, only transport layer security for mobile
devices has been discussed. Other security issues are out
of scope of this paper. Any implementer of the transport
layer security for mobile devices should be aware of the
security weaknesses that the J2ME environment con-
tains [4].

This paper presents a solution to end-to-end secu-
rity needs of mobile devices, such as PDAs and mobile
phones. After a brief explanation of mobile architec-
tures is given, the proposed architecture for end-to-end
security of mobile devices is described. The next section
mentions the implementation details of the architecture;
the development environment and some implementa-
tion issues. Then the experiment enviroment and exper-
iments are explained together with their results. The

paper ends with a discussion of the results of experiments.

@ Springer

2 Mobile architectures

Mobile Java applications run on mobile devices, mostly
mobile phones and Personal Digital Assistant (PDA)
devices. Whatever the device is, the application platform
has a unique architecture. This architecture consists of
the device’s architecture (hardware, OS, JVM, etc.), net-
work connection architecture that connects the mobile
device to the outside world and the application architec-
ture. The mobile security protocol developed will run on
the architecture explained below.

2.1 Device architecture

Today, many cell phones and PDAs support Mobile
Information Device Profile (MIDP) technology. Usu-
ally, cell phones have built-in support for either MIDP
1.0 or 2.0; and PDAs (mostly PALM based PDAs) sup-
port MIDP after installing the KVM (Kilobyte Virtual
Machine) specific for these devices. A variety of devices
from different vendors have J2ME (Java 2 Micro Edi-
tion) MIDP support [7]. In order to support this kind of
flexibility and customization need, J2ME architecture
is designed to be modular and scalable. Figure 1 shows
the general architecture of a J2ME MIDP device with
its layered approach, based on [13]. In this architecture,
the host operating system communicates with the device
hardware and provides services for the Java Virtual Ma-
chine (JVM) layer. JVM layer is the implementation of
a Java virtual machine that is customized for a particular
device’s host operating system and supports a particu-
lar J2ME configuration. The configuration layer defines
the minimum set of Java virtual machine features and
Java class libraries available on a particular category of
devices. The profile layer defines the minimum set of
Application Programming Interfaces (APIs) available
on a particular family of devices. The layer where Java
applications are written is the Profile Layer. Mobile de-
vice operating systems control the mobile device hard-

Profiles

Configuration

Java Virtual Machine

Host Operating System

Fig. 1 J2ME device architecture [13]

End-to-end security implementation for mobile devices using TLS protocol

ware and provide services for the JVM layer. Although
MIDP applications run on top of a JVM and are inde-
pendent of the operating system, the implementation of
the JVM is customized for the operating system. So the
operating systems capabilities define the MIDP applica-
tion capabilities. The most common operating systems in
MIDP supporting devices are PALM OS and Symbian
OS.

As in desktop, Java applications on mobile devices
run on top of a virtual machine called JVM. The virtual
machine is implemented in native code and may directly
use operating system services. The VM of mobile devices
are different from J2SE JVM because of the limited
resources and device architectures of mobile devices.
The K Virtual Machine (KVM) is a highly portable JVM
designed from the ground up for small memory, limited-
resource and network-connected devices such as cellular
phones, pagers and personal organizers [13].

Configuration Layer defines the minimum set of Java
virtual machine features and Java class libraries avail-
able on a particular “category” of devices. Connected,
Limited Configuration Layer (CLDC) is the configu-
ration specified for small, resource constraint mobile
devices. CLDC specification defines Java language and
virtual machine features, core libraries, input/output,
networking, security and internationalization [14].
CLDC configuration does not address application life-
cycle management (installation, launching, deletion),
user interface, event handling and high level application
model. These features are addressed by profiles imple-
mented on top of the CLDC.

Profile Layer defines the minimum set of APIs avail-
able on a particular family of devices. Profiles are imple-
mented on top of configurations. A device can support
multiple profiles. MIDP (see [15,16]) is the most com-
mon profile implemented in all J2ME profiles. MIDP
defines a very limited API because of size and perfor-
mance reasons. However, it can be extended with vari-
ous optional packages. Bluetooth (JSR 82), Web services
(JSR 172), wireless messaging (JSR 120), multimedia
(JSR 135), and database connectivity are some of the
optional packages developed for CLDC/MIDP environ-
ments. Device manufacturers may or may not include
optional packages in their device implementations.

2.2 Network connection architecture

A Wireless Local Area Network (WLAN) is a flexi-
ble data communications system that can either replace
or extend a wired LAN to provide added functionality
[5]. WLANS use Radio Frequency (RF) to transmit and
receive data over the air without cables. Data is super-
imposed onto a radio wave through a process called

modulation, and this carrier wave then acts as the trans-
mission medium, taking the place of a wire. WLANs
use the 2.4 Gigahertz (GHz) frequency band. WLANs
offer all the features of traditional Ethernet or Token
Ring networks with the addition of increased network
infrastructure flexibility. This flexibility makes wireless
networks an important alternative to wired-networks in
small areas. WLANS provide a communication medium
for wireless mobile devices (PALM, e.g.) in small areas
like a building.

An alternatively new technology in mobile device
communication is Bluetooth. Bluetooth provides short-
range wireless connectivity over radio-frequency tech-
nology that uses the 2.4 GHz Industrial-Scientific-Medic
al (ISM) band [9]. Bluetooth lets mobile devices com-
municate with each other up to 10 m range and 1 Mbit/s
speed. The IEEE has designated its version of Bluetooth
with 20 Mbit/s speed, as the IEEE 802.15 standard.

GPRS (General Packet Radio Service) is an enhance-
ment of core GSM (Global System for Mobile Com-
munications) networks that allows the rapid transfer of
data bundled into packets, separate from voice or data
call circuits [17]. GPRS is a 2.5 Generation (2.5G) tech-
nology that is the last stone before the coming 3G net-
works that will give high speed access allowing live video.
GPRS data is transmitted in packets, up to the speed of
20 or 30 Kbps though the theoretical maximum speed is
171.2 Kbps. GPRS set-up time is short and connection is
always on.

2.3 Application architecture

Client/server architecture is the main architecture for
mobile network applications. In this architecture, a
network-aware application residing on a wireless device,
client, connects with back-end applications and servers
behind a firewall or proxy gateway over a wireless net-
work and Internet and corresponding communication
protocols. Figure 2 shows the client/server architecture
of a mobile application.

In Figure 2, the wireless devices can be mobile phones,
PDAs s or two-way pagers. They have the mobile applica-
tions on top of MIDP and communicate with an antenna
over a wireless communication protocol. These proto-
cols can be Wireless-LAN on a small area or GPRS on a
wide area. The antenna is directly connected to a wired
network like Internet, which connects the mobile device
to the back-end server systems.

Mobile applications typically use HTTP as the
application-level communication protocol as it is com-
mon and can pass firewalls. HTTP is the mandatory pro-
tocol in MIDP 1.0 [15] and MIDP 2.0 specifications [16].

@ Springer

B. Kayayurt, T. Tuglular

Fig. 2 Environment of a
typical networked wireless
application [11]

Wireless
Devices

E]

B
¢

With MIDP 2.0, low-level socket APIs can also be used
to directly communicate with the server application be-
low the application level.

TLS may provide an application-level end-to-end
security on top of sockets in this architecture. The TLS
implementation developed in this thesis runs on top of
pure sockets and provides an application level security
between a MIDP application and server back-end appli-
cation. The MIDP version of the developed TLS proto-
col communicates with the J2SE version of the protocol
and sends object data over the secure connection. The
mobile device always runs the client version of TLS pro-
tocol and the back-end server always runs the server
version of the TLS protocol. Peer To Peer Architecture
is an alternative and new architecture for wireless de-
vices. In this architecture, the two devices communicate
directly with each other. This communication may be the
direct communication of the devices over a communica-
tion medium like Bluetooth or it may be an application
level communication with the two mobile applications
communicating over a central server.

The client side of the application is the same as the
Client/Server Architecture. It uses either HTTP or low-
level socket APIs, either stream-based or datagram-
based, for network communication. The difference is
in the server side. In this architecture, the server is also
amobile device. MIDP 2.0 has an API for server sockets
that may be used for this purpose. The TLS implemen-
tation to work in this architecture needs both client and
server versions of TLS to work in the mobile device.

This may be impractical for two reasons. First, re-
source constraints of mobile devices may cause perfor-
mance problems for server side implementation of the
TLS protocol. Second, server sockets are not commonly
implemented in MIDP devices. In spite of these deficien-
cies, the TLS implementation presented in this paper can
be used in peer-to-peer architectures for experimental
purposes.

@ Springer

The Network

Server and Back-End Systems

Back-end Application Servers

Firewall

3 Design of mobile devices end-to-end security
architecture

The security protocol presented in this paper is an end-
to-end security protocol based on TLS 1.0 specifications
and adopted to work on J2ME mobile devices as well as
standard Java VMs. The protocol implementation itself
is also an application, although high-level applications
may use it through its APIs to transmit data and objects
securely.

The security protocol architecture developed cov-
ers both TLS protocol architecture and the necessary
APIs architecture. TLS protocol architecture is based
on TLS 1.0 specification and has some additions and
subtractions. The necessary APIs architecture involves
cryptography model classes that abstract the real imple-
mentations of cryptography packages; socket classes that
abstract TCP or UDP based socketimplementations and
the serialization of object data; XML Serializer archi-
tecture that is a standalone API incorporated into the
protocol implementation. The main design issues taken
into consideration during the definition of the architec-
ture of protocol implementation are J2ME compatibil-
ity, mobile adaptation, secure object transmission, full
abstraction and complete solution.

The main architecture of the mobile end-to-end secu-
rity protocol is based on the TLS 1.0 protocol specifica-
tion [3]. TLS is a protocol that consists of several layers
of protocols as shown in Figure 3. At the bottom of these
layers, there is the TLS Record Protocol. The Record
Protocol is responsible for taking messages to be trans-
mitted, fragmenting into blocks, optionally compress-
ing, applying MAC to protect data integrity, encrypting
the block and transmitting the result to higher level cli-
ents. Received data is then decrypted; applied MAC
is verified to protect data integrity; optionally decom-
pressed; reassembled and then delivered to higher level
clients by the Record Protocol. TLS Record Protocol

End-to-end security implementation for mobile devices using TLS protocol

Fig. 3 The layered structure

of TLS protocol Handskale Protocal

Alert Protocol

o
ol

Lppli atiom Data

Record Protocol

TCP

blocks are transported over a reliable transport proto-
col like TCP. There are four clients of record proto-
col: TLS Handshake Protocol, TLS Alert Protocol, TLS
Change Cipher Spec Protocol and application data. TLS
1.0 Specification allows new record protocol clients to be
supported by the record protocol. TLS Handshake Pro-
tocol is used to allow peers to authenticate each other
and to exchange cryptographic parameters that are used
in TLS Protocol. TLS Handshake is performed at the
beginning of a session before the application data is
transmitted or received. The Change Cipher Spec Pro-
tocol is used to start to use new keys and encryption
methods that the Handshake Protocol has established.
TLS Alert Protocol is used to send warning and fatal
level errors that could occur in TLS session. After the
handshake is performed, application data is taken by
Record Layer and sent securely to the other peer.

In our model, the Record Layer behavior is imple-
mented in the class RecordLayerImpl and the Hand-
shake Layer behavior is implemented in the class
HandshakeLayerImpl. This class has two instances of
class RecordLayerImpl; one for current state and one
for pending state. Both HandshakeLayerImpl and Re-
cordLayerImpl classes are transparent of the underlying
socket implementations and talk to the peer classes in
both sides of the communication.

The classes TLSClientSocket and TLSServerSocket-
Listener are the only classes needed to be known by
the applications that will use this implementation of the
protocol. An application that needs to be the client in
the secure communication must use the class TLSClient-
Socket; an application that needs to be the server in the
secure communication must use the class TLSServer-
SocketListener. The class TLSServerSocket is used to
handle a secure connection session in the server-side as
aseparate thread. An application may use the class TLS-
SocketFactory to obtain either a TLSClientSocket class
instance or a TLSServerSocketListener class instance.

The mobile secure application is designed as the pro-
tocol implementation separated from the underlying
communication model. This is achieved by the inter-

face TLSSocketImpl. This interface defines the opera-
tions needed for sending and receiving of secure data
and implemented by the client and server socket clas-
ses that abstract the communication details from the
protocol details. Thus, the communication of data can
be changed without changing any protocol dependent
code. The class TLSTCPSocketImpl is the client-side
implementation of the interface TLSSocketImpl as TCP
based stream socket and the class TLSTCPServerSock-
etImplis the server-side implementation of the interface

TLSSocketImpl as TCP based stream server socket. The
class TLSUDPSocketImpl is the client-side implemen-
tation of the interface TLSSocketImpl as UDP based
datagram socket and the class TLSUDPServerSocket-
Impl is the server-side implementation of the interface
TLSSocketImpl as UDP based datagram socket. Figure 4
shows the main object model of the mobile end-to-end
security protocol.

The class HandshakeLayerImpl defines operations
and attributes needed to perform Handshake Layer
behavior and to send and receive application-level data
after the establishment of a secure session. Each secure
session has one instance of class HandshakeLayerImpl
and the class instances at both side of the communica-
tion talk to each other. While the Handshake Layer in
TLS Protocol communicates with the Record Layer to
send and receive data, the HandshakeLayerImpl class
uses RecordLayerImpl class to send and receive data.

The class RecordLayerImpl defines operations and
attributes needed to perform Record Layer behavior.
The responsibilities of RecordLayerImpl class are to
send and receive application and Handshake Layer data
after encoding and decoding; generate new TLS keys
according to the exchanged security parameters; copy
security parameters from pending state to current state
and activate new TLS keys for read side and write
side. In TLS 1.0, the Record Layer performs encryp-
tion, MAC and compression functions according to the
algorithms exchanged during handshake procedure. The
Record Layer architecture of the mobile protocol is
modeled to support this need in an extensible way. This is

@ Springer

B. Kayayurt, T. Tuglular

RecordLayerimpl
ghanshakeMessages'actor © java il \ector
ThkeyBytes]] : byte
“Tpurite Side SeqNumber ; long
“Thread Side SeqNumber : long
TholientWritehiac Secret] : byte
ThserveriiiteMac Secret[] : byte
F Hands bake Layermepl TholientWite Kay [] : byte
Bphandshaked : boolean TDpeerveriiitekey] byte RecordGenerator
TholientWrite V] : byte ATA LENGTH .
WHandshakeLayerimpl() Wserveririte V] - byte iy -
WmakeHandshake() § :
Wnegotiae Handshal vl F a -) =
BcendDatal) VendDatal) "
WsendDatal) 1 ! | %sendDatap ! m'"s"'ﬁo
WrecaiveObject() @sendTLS Datag) ‘ncn:;“:ﬁa:m
BreceiveDatal) BraceiveTLS Stream() SgetentRecordBytes)
Wget Handshaked() WreceiveDatal) nscoobidel o
%zt Handshaked() BreceiveObject() |
§ VreceiveTLS Datal)
refreshSecurity Parameters()
1 ghiakiglenpt Bgenerate NewTLS Keys()
impl Bcopy Read Parameters()
BoopyWiite Parameters()
[S NewTl -“'. ir 3
QactivateNauTLSKays ForReadSide)
TLS Socket
GSOCKET IMPL_CLASS : java lang String
HSER SOCKET IMPL CLASS : java.lang. St
ATLS Socket()
-socket! pliﬂl pl
TLS Socket gl erverSock etimpl
ScioseConnectidn()
TLS Diatal)
'ﬁ:LSDzzO
Port()
‘g;mPono TLS ServerSocketlistener
LocalPort() [
":;o;:::;ﬂo Bhiocalport - int
BsetUd)) Bhur : javalang. String
BopenConnection()
AgerCliont Requestd :an‘;:smsmmummo
et Dbjecthiessagel) TLSClient Socket 2
ObjectO s TLS ServerSocket x%ﬂo
D TLSUDFSocketimpl o Fiva g Biriog e
om roondBe) ooalPort ; it 9TLS ServerSocket() th’;fo“’“o
Wppon 1in
TLSTCPSocketimpl BpbcalPort : int BTLECliert Socket() 9sendData)
= Bt : java.tang Sting S performHandshake()
java lang, String SsendDat)
Port - it STLSUDPS0 cketimpl) % send Object()
) @getPon()
BTLSTCP Socketimpl)) Qch seConnection() zutPon()
et Streams() SsendTLSDaraQ) YzetLocalPort)
VgetTL S Dam() e LrQ)
Sclose Connection() SgetPort() Q=zetUd)
RzendTLS Data) BzatPory)
YgetTLS Datan) YgetlocalPor()
QgetPor) BzetlocalPor()
YsatPort) :g'l'-w"'g
YgetlocalPont) .
BsetlocalPort() BopenC onnecion)
a0 BgarClientRequest))
zetlii)) Vgat0b) ect Messagel) TLSSocket Factony
BopenConnection() SgetObject () GLCLIENT SOCKET :int = 1
Qget Client Request() GIERVER SOCKET :imt=3
Qgat ObjectMessage() o
YgetObject() EPTLS Socket Factory()
Vgetinstancer)
Vereate Socket()
TLSUDPServerSocketimpl
TLETCP SarverSocketimpl ’TLSUDFSW“SOOI(HMIO
ATLSTCPServerSocketimpl() ey
erver p
Setang Brun()
SrunQ)

Fig. 4 Main object model of the mobile end-to-end security protocol

achieved with the use of the interfaces TLSEncryption,
TLSMac and TLSCompression. These interfaces define
the base methods to perform encryption, decryption,
adding MAC, verifying MAC, compression and decom-

@ Springer

pression. Algorithms are implemented in the classes
implementing these interfaces. This method eases the
addition of a new algorithm to the protocol implemen-

tation.

End-to-end security implementation for mobile devices using TLS protocol

4 Implementation of mobile devices end-to-end
security architecture

The mobile end-to-end security protocol is implemented
in Java to be compliant to both J2ME and J2SE plat-
forms. The development environment for mobile end-
to-end security protocol is JBuilder 8.0 Enterprise
MobileSet 3 Integrated Development Environment. The
development environment was chosen because it has an
integrated MIDP application development support. A
project may be compiled with MIDP libraries by chang-
ing the project JDK to J2ZMEWTK from the project
properties window. JBuilder IDE was also chosen for
its high performance, code completion feature and user-
friendly interface.

JBuilder IDE uses Sun Microsystem’s J2ME Wireless
Toolkit for MIDP development. J2ME Wireless Toolkit
(J2MEWTK) is a toolkit that can be used separately or
plugged into a development IDE. It provides develop-
ment tools and emulators for MIDP application devel-
opment. The 2.1 version of J2MEWTK is used in the
development and in the experiements of the developed
protocol for mobile environments. 2MEWTK 2.1 sup-
ports MIDP 2.0, CLDC 1.1, optional Wireless Messaging
API (JSR 120), Mobile Media API (JSR 135) and Web
Services Access for J2ME API (JSR 172).

J2ME Wireless Toolkit has the tool Ktoolbar that
manages MIDP application development. Ktoolbar has
menu options for creating a new MIDP application,
opening an existing one, compiling and running the
application with the set up MIDP version, changing the
J2MEWTK and application preferences.

J2MEWTK uses device emulators to run MIDP appli-
cations. Device emulators are software implementations
of mobile devices to test applications before the real
deployment. Device emulators provide a faster and eas-
ier development for mobile applications. Most mobile
phones and PALM devices have their emulator soft-
ware. Mobile phone emulators are distributed by tele-
phone vendors freely. They have the same operating
system and visual interface with the original telephone.
PALM emulators emulate PALM OS. A ROM file is
taken from a real PALM device with Hotsync connec-
tion and loaded into the emulator software. This gives
all the features of the PALM device to the emulator soft-
ware including program installation and uninstallation.
Some examples are also run on original PALM M100
PDAs and Nokia 6600 mobile phones.

Java has been divided into three platforms: J2EE
for server side development, J2SE for standard desk-
top applications and J2ME for small, embedded devices.
J2ME has its own configurations and profiles. Each con-
figuration and profile has its own library APIs. The main

target Java platform for the mobile security protocol is
J2ME platform. The configuration is CLDC and the pro-
file is MIDP. This fact caused CLDC/MIDP APIs to be
used in the implementation of the protocol.

Most CLDC/MIDP language APIs are also valid in
J2SE platform, that makes the developed protocol also
compliant to this platform. However, because of the
limits of mobile devices, network connection library has
been changed. J2ME uses Generic Connection Frame-
work (GCF) for all kinds of connections including
network and file connections. This brings a lighter con-
nection API when compared with the heavy network
API of J2SE platform. J2ME version of the protocol
uses GCF and the J2SE version uses java.net package
for network connections.

The security protocol implementation needs secure
network connections to send and receive data between
peers. Network connection implementations are
abstracted from business logic classes and appear in
socket classes that are used by other classes.

J2ME uses GCF and J2SE uses java.net package net-
work connection classes to provide network connec-
tions. The protocol implementation may use TCP and
UDP sockets and server sockets for network connec-
tions between client and server. The socket connection
type is determined by the constants in class TLSSocket.

The Bouncy Castle Crypto package is a Java imple-
mentation of cryptographic algorithms. The package is
organised so that it contains a light-weight API suitable
for use in any environment (including the newly released
J2ME) with the additional infrastructure to conform the
algorithms to the JCE framework [2]. The Bouncy Cas-
tle Crypto package can be downloaded from http: //
www . bouncycastle.org/ for free. This software is
distributed under a license based on the MIT X Consor-
tium license.

5 Experiments and discussion

The mobile end-to-end security protocol was imple-
mented mainly to be used in mobile devices, PDAs and
mobile phones, for example. The implemented proto-
col library is loaded on a real mobile phone to show
that it can run on a resource-constraint environment
and establish network connection on a real wireless net-
work. Mobile end-to-end security protocol was designed
and implemented to have a reliable and maintainable
protocol implementation that would have acceptable
performance results. This section mentions the experi-
ments performed to measure the performance averages
of the protocol implementation. It presents the scope of
experiments, the platform experiments were performed,

@ Springer

B. Kayayurt, T. Tuglular

different experiment cases prepared and the evaluation
of the experiment results. The result values of those
experiments are shown as well.

5.1 Scope of the experiments

The mobile end-to-end security protocol experiments
involve the performance runs of both the client and
server modes of the protocol with different cipher suites.
Experiments cover both J2SE (as server) and J2ME (as
client) platforms. The secure connection will be estab-
lished with different cipher suites and TCP is used as the
underlying network connection protocol.

The experiments of the protocol are divided into two
main sections:

— Experiment of the handshake procedure.
— Experiment of the application level object transmis-
sion and receiving.

As the handshake procedure has many steps, itis divided
into different time spans. In this way, it is aimed to mea-
sure the real performance of the steps and to define
bottlenecks in the protocol implementation. Some oper-
ations will only be available in specific cipher suites.
Table 1 shows the operations in both server and client
modes of the protocol. Experiments were performed by
using different TLS cipher suites. Server side of the pro-
gram supports all cipher suites available to the mobile
security protocol implementation. Each experimental
client supports only one cipher suite and requests the
handshake to be performed with that cipher suite when
it sends ClientHello message to to the server. Thus, the
connection will be established with that cipher suite.
Table 2 shows cipher suites used in the protocol experi-
ments. The first cipher suite in Table 2 is non-ephemeral,
that means asymmetric keys are not generated at run-
time. The other cipher suites in Table 2 are ephemeral,
that means asymmetric keys are generated at run-time.
Experiment results are organized to compare ephemeral
cipher suite results with each other. The other compar-

Table 1 Mobile security protocol operations used in experiments

Operation Server Client

Public key signing

Public key verification

Key pair generation
Pre-master secret generation
Master secret generation
TLS keys generation

All handshake

OO O
COOOOO

@ Springer

ison given is between non-ephemeral RSA and ephem-
eral RSA.

The experiments were performed according to the
following scenario:

— A server listening to secure connection requests.

— A client requesting a connection with the server.

— Performance of the handshake procedure.

— Sending of an example object from client to server
over the secure connection established. The example
object is called Person that has the private attributes
id, name and surname.

5.2 Mobile device experiment platform configuration

Mobile end-to-end security protocol was designed and
implemented to be run on J2ME CLDC/MIDP plat-
forms including cellular phones and PALM PDAs. The
experiments with a real mobile device are performed
by running the experimental client program on a mo-
bile phone and server program on a desktop PC. The
mobile phone is a Nokia 6600 smart phone with ARM9
104 MHz CPU, 6 MB of storage memory, GPRS and
Bluetooth connectivity and Symbian OS 7.0s operating
system with MIDP 2.0 support. The network connection
between the mobile phone and the desktop PC is pro-
vided with the GPRS connection provided by Turkcell
mobile service carrier. The transport protocol used in
the experiments is TCP.

Mobile device experiments were performed only on
J2SE-J2ME architecture mentioned in section 5.1. Exper-
imental programs run ten times and the highest (max),
lowest (min) and average time durations are measured.

5.3 Mobile device experiment results

Mobile device experiments were performed according
to the configuration explained above. There was no
problem in establishing communication with GPRS and
all experiments succeeded. Figures 6 and 7 (see Appen-
dix) show the secure communication time span dura-
tions when the experimental client program runs on a
Nokia 6600 mobile phone, the server program runs on
J2SE platform and transport protocol between is TCP.
All values presented in the tables are milliseconds (ms).
“0” value in a table means that the time duration is be-
low milliseconds. N/A value in a table means that the
operation is not applicable in the cipher suite.

Figure 5 shows the comparison chart of average client
total handshake times of the experimental cipher suites
when the client runs on a Nokia 6600 mobile phone
and the server runs on J2SE platform and the transport

End-to-end security implementation for mobile devices using TLS protocol

Table 2 Cipher suites used in protocol experiments

Cipher suite Authentication and key Symmetric Hash
exchange algorithm algorithm algorithm
TLS_RSA_WITH_AES_CBC_SHA RSA AES SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA_EXPORT RC2 MD5
TLS_DHE_RSA_WITH_DES_CBC_SHA DHE_RSA DES SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDHE_ECDSA AES SHA

Fig. 5 Client average
handshake times on Nokia

6600 mobile phone
40000

Client Handshake Averages On Nokia 6600 Mobile Phone

OTLS_RSA
WITH

33800

AES_CBC_SHA

35000

JU5b B TLS_RSA_

30000
25000 ~
20000 -
15000
10000
5000
o4

EXPORT_WITH_

RC2_CBC_40_MD5
OTLS_DHE_RSA

WITH

DES_CBC_SHA
O TLS_ECDHE_ECDSA_WITH_
i AES_128_CBC_SHA

All Handshake

protocol between is TCP. The results of the experiments
performed were shown in tables given in Appendix. The
handshake procedure is divided into operations. Each
operation is an important step in the handshake that was
expected to take a measurable time. The experiments
were repeated for a definite number for each case and
the resulting average, max and min values were noted.
Experiment results will be evaluated according to the
following criteria:

Defined operations;
Running platform;
Network protocol;
Cipher suite.

All the average, min and max values increase in the
J2SE-J2ME experiment results shown in Figures 6 and 7.
This architecture includes a client in J2ME platform and
a server in J2SE platform and expected to be
widely used in real life. The lowest average total hand-
shake value in this architecture is 19756 milliseconds
of TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
cipher suite. The highest average total handshake value
is 33,800 milliseconds of TLS_RSA_WITH_AES_CBC
_SHA cipher suite. Considering ephemeral, the highest
average total handshake value is 30,596 milliseconds of
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
cipher suite. This shows that Elliptic Curve Diffie
-Hellman operations have a poor performance on J2ME
platform. These results are shown in the chart in Fig-
ure 5.

6 Conclusion

End-to-end security is an emerging need for mobile de-
vices. Banking, military and other enterprise applica-
tions need more and more security to run on mobile
devices. This project aimed at developing an extensible
end-to-end security protocol implementation that could
be used by both mobile and desktop applications. TLS
protocol that is commonly used on the Internet was cho-
sen as the base of the developed protocol implementa-
tion.

The proposed protocol was designed and implemented.
The implementation was run with different experiments
and the time span of operations were measured. The
protocol implementation run on a real Nokia 6600 mo-
bile phone and established a secure connection with a
server computer connected to the Internet over GPRS.
All the experiments were successfully completed, which
indicated that the protocol was properly designed and
implemented with respect to specifications. The imple-
mentation guarantees the security of any transmission
at most as much as TLS. The implementation did not
include optional TLS specifications like client authenti-
cation, session resumption and compression.

Appendix

Experimental results

@ Springer

B. Kayayurt, T. Tuglular

Fig. 6 Cryptographic
operation durations in the
mobile device experiments
for ephemeral

Fig. 7 Cryptographic
operation durations in the
mobile device experiments
for RSA ciphers

@ Springer

TLS TLS TLS
RSA EXPORT_ DHE_RSA ECDHE_ECDSA
WITH_ _WITH_ WITH_
Time Span RC2 CBC 40 DES CBC_ AES 128 CBC_
MDS SHA SHA
(ms) _ (ms) i {ms) i
Max Mmn A Max Min A Max Mm
Client |
Public key venfication 3021 5562 2672 327 5781 2938 8251 11156] 7640
Premaster secret generation 322 359 282 17 31 0] 2061 2235 1938
Master secret generation 129 281 78 120 265 63 148 250 79
Key pair generation NiAl /sl wial 303 625| 234| 2369 2547| 2219
TLS keys generation 798| 4625 359 804 4610 3591 841| 4671 390
41l Handshake 19756| 45125| 16156| 20708| 42766 17000| 30596| 68906] 25625
TLS_ TLS_ TLS_
RSA_EXPORT_ DHE_RSA ECDHE_ECDSA_
WITH_ _WITH_ WITH_
Time Span RC2_CBC_40_ DES_CBC_ AES_128_CBC_
MDS SHA SHA
(ms)) {ms) . (ms) _
Max Min Avg, Max Mmn | Avg | Max Mmn
Server I
Public key signing 43 121 20 42 90 30 72 160 40
Key pair generation 811 2673 2100 1743 4767 30) NfA| N/A| N/A
Premaster secret generation 26 3l 20 1 10 0 17| 115 11
Master secret generation 3 60 i] 8 60 0 5 50 0
TLS keys generation 10 60 0 42 421 0] 10 60 0
All Handshake 11106] 22943] 9243| 12060 23194 9764| 20364 32717| 18256
TLS_ TLS_
RSA RSA_EXPORT_
WITH WITH_
Time Span AES_CBC_ RC2_CBC _40_
SHA MDS
(ms) (ms)
Av Max Min Ay Max Min
Client
Public key verification NfA| N/A| N/A| 3021 5562 2672
Premaster secret generation 600 1781 578 322 359 282
IMaster secret generation 167 312 125 129| 281 78
Key pair generation N/& N/A| NfA N/A N/A N/A
TLS keys generation 801 4234 390 798| 4625 359
All Handshake 33800| 82375| 13907| 19756| 45125| 16156
TLS_ TLS
RSA RSA_EXPORT_
WITH WITH _
Time Span AES CBC_ RC2_CEBC_40_
SHA MDs
(ms) (ms)
A Max Min A Max Min
Server
Public key signing NiA| N/A] /A 43 121 20
Key pair generation NfA| N/A| N/A 811) 2673 210
Premaster secret generation 55 120 30 26 31 20
Master secret generation 7 50 0 8 60 0
TLS keys generation 8 60 0 10| 60]
All Handshake 19657| 64893| 6840 _lllﬂﬁl 22043 9243

End-to-end security implementation for mobile devices using TLS protocol

References

. Agarwal, A K., Gill, J.S., Wang, W.: An experimental study on
wireless security protocols over mobile IP networks. In: IEEE
Proceedings of 60th Vehicular Technology Conference (2004)
. BouncyCastle: Bouncy Castle Documentation. (2006)
http://www.bouncycastle.org/documentation.html

. Dierks, T., Allen, C.: The TLS protocol version 1.0, IETF RFC
2246 (1999)

. Reynaud-Plantey, D.: J2ME low level security: implemen-
tation versus specification. (2005) http://prdownloads.source
forge.net/tinapoc/Reynaud_J2ME.pdf?download

. Intel IEEE 802.11b high rate wireless local area networks,
Intel Corporation (2000)

. Jgsang, A., Sanderud, G.: Security in mobile communications:
challenges and opportunities. In: Australasian Information
Security Workshop (AISW2003), Australia (2003)

. Knudsen, J.: Introduction to Wireless Java Technologies White
Paper, Sun Microsystems Inc. (2001)

. Kwon, E., Cho, Y., Chae, K.: Integrated transport layer secu-
rity: end-to-end security model between WTLS and TLS. In:
IEEE Proceedings of 15th International Conference on Infor-
mation Networking, pp. 65-71 (2001)

. Mahmoud, Q.H.: Wireless Application Programming with
J2ME and Bluetooth. (2003) http://developers.sun.com/tech
topics/mobility/midp/articles/bluetooth1/

10

11.

12.

13.

14.

15.

16.

17.

. Mynttinen, J.: End-to-end security of mobile data in GSM.
Tik-110.501 Seminar on Network Security. Helsinki Univer-
sity of Technology (2000)

Ortiz, E.: The Complexity of Developing Mobile Networked
Data Services, J2ME Wireless Connection Wizard For Sun
ONE Studio. (2006) http://developers.sun.com/techtopics/
mobility/midp/articles/wizard/index.html

Soriano, M., Ponce, D.: A security and usability proposal for
mobile electronic commerce. IEEE Commun Mag, 40(8) 62—
67 (2002)

Sun Microsystems: Java 2 Platform Micro Edition (J2ME)
Technology for Creating Mobile Devices White Paper, Sun
Microsystems Inc (2000)

Sun Microsystems: Connected, Limited Device Configuration
1.0a Specification, Sun Microsystems Inc. (2000)

Sun Microsystems: JSR-000037 Mobile Information Device
Profile (MIDP) 1.0 Specification, Sun Microsystems Inc.
(2000)

Sun Microsystems: JSR-000118 Mobile Information Device
Profile 2.0 Specification, Sun Microsystems Inc. (2002)
Symbian: Symbian on GPRS (2001). (2001) http://www.
symbian.com/technology/standard-gprs.html

@ Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

